3.7 Factoring a Sum or Difference of Cubes (Powers)

A Difference of Two Cubes	Ex 1. Use the difference of cubes identity to factor the following polynomial functions:
The following formula is called the <i>difference of cubes</i>	a) $x^3 - 8$
identity.	b) $27x^3 - 64$
$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$	c) $\frac{x^3}{27} - 125$
B Sum of Two Cubes	Ex 2. Use the sum of cubes identity to factor the following polynomial functions:
The following formula is called the <i>sum of cubes</i>	a) $x^3 + 1$
identity.	b) $8x^3 + 27$
$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$	c) $\frac{x^3}{64} + \frac{8}{27}$
C Difference of Two Powers	Ex 3. Factor as much as you can.
For any natural number n , the following identity is true:	a) $x^2 - 4$
$a^{n} - b^{n} =$	b) $x^4 - 16$
= (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + + a^{2}b^{n-3} + ab^{n-2} + b^{n-1})	Ex 4. Use synthetic division to factor $x^5 - 32$.

D Sum of Two Powers	Ex 5. Use synthetic division to factor completely.
If n is an <i>odd</i> natural number, the following identity is true:	a) $x^5 + 1$
$a^n + b^n =$	
$= (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \dots \pm a^2b^{n-3} \mp ab^{n-2} \pm b^{n-1})$	
	b) $x^7 + 128$
Ex 6. Use different techniques to factor. a) $x^6 - 1$	c) $x^9 + 1$
b) $x^{10} - 1$	
Ex 7. Given that $a-b=4$ and $ab=2$, find a^3-b^3 .	

Reading: Nelson Textbook, Pages 178-181 Homework: Nelson Textbook, Page 182: #2ac, 3ac, 5a, 6, 8