3.7 Factoring a Sum or Difference of Cubes (Powers)

A Difference of Two Cubes

The following formula is called the difference of cubes identity.

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Ex 1. Use the difference of cubes identity to factor the following polynomial functions:
a) $x^{3}-8$
b) $27 x^{3}-64$
c) $\frac{x^{3}}{27}-125$

B Sum of Two Cubes

The following formula is called the sum of cubes identity.

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Ex 2. Use the sum of cubes identity to factor the following polynomial functions:
a) $x^{3}+1$
b) $8 x^{3}+27$
c) $\frac{x^{3}}{64}+\frac{8}{27}$

C Difference of Two Powers

For any natural number n, the following identity is true:

$$
\begin{aligned}
& a^{n}-b^{n}= \\
& =(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a^{2} b^{n-3}+a b^{n-2}+b^{n-1}\right)
\end{aligned}
$$

Ex 3. Factor as much as you can.
a) $x^{2}-4$
b) $x^{4}-16$

Ex 4. Use synthetic division to factor $x^{5}-32$.

Reading: Nelson Textbook, Pages 178-181
Homework: Nelson Textbook, Page 182: \#2ac, 3ac, 5a, 6, 8

